Posts Tagged ‘creative thinking techniques’


There is no such thing as failure. Failure is only a word that human beings use to judge a given situation. The artificial judgments of failure only keep you from trying something and erring or making a mistake. Yet those mistakes and errors are the way we learn and the way we grow.

Whenever we attempt to do something and fail, we end up doing something else or producing something else. You have not failed; you have produced some other result. The two most important questions to ask are: “What have I learned?” and “What have I done?”

B.F. Skinner advised people that when you are working on something and find something interesting, drop everything else and study it. In fact, he emphasized this as a first principle of scientific methodology. This is what William Shockley and a multi-discipline Bell labs team did. They were formed to invent the MOS transistor and ended up instead with the junction transistor and the new science of semiconductor physics. These developments eventually led to the MOS transistor and then to the integrated circuit and to new breakthroughs in electronics and computers. William Shockley described it as a process of creative failure methodology.

Richard Feynman, a Nobel Laureate physicist, had an interesting practical test that he applied when reaching a judgment about a failed idea: for example, did it explain something unrelated to the original problem. E.g., What can you explain that you didn’t set out to explain? And, What did you discover that you didn’t set out to discover? In 1938, 27 year old Roy Plunkett set out to invent a new refrigerant. Instead, he created a glob of white waxy material that conducted heat and did not stick to surfaces. Fascinated by this unexpected material, he abandoned his original line of research and experimented with this interesting material, which eventually became known by its household name, Teflon.

Failures, mistakes and errors are the way we learn and the way we grow. Many of the world’s greatest successes have learned how to fail their way to success. Some of the more famous are:

Albert Einstein: Most of us take Einstein’s name as synonymous with genius, but he didn’t always show such promise. Einstein did not speak until he was four and did not read until he was seven, causing his teachers and parents to think he was mentally handicapped, slow and anti-social. Eventually, he was expelled from school and was refused admittance to the Zurich Polytechnic School. He attended a trade school for one year and was finally admitted to the University. He was the only one of his graduating class unable to get a teaching position because no professor would recommend him. One professor labeled him as the laziest dog they ever had in the university. The only job he was able to get was an entry-level position in a government patent office.

Robert Goddard: Goddard today is hailed for his research and experimentation with liquid-fueled rockets, but during his lifetime his ideas were often rejected and mocked by his scientific peers who thought they were outrageous and impossible. The New York Times once reported that Goddard seemed to lack a high school student’s basic understanding of rocketry. Today rockets and space travel don’t seem far-fetched at all, due largely in part to the work of this scientist who worked against the feelings of the time.

Abraham Lincoln: While today he is remembered as one of the greatest leaders of our nation, Lincoln’s life wasn’t so easy. In his youth he went to war a captain and returned a private (if you’re not familiar with military ranks, just know that private is as low as it goes.) Lincoln didn’t stop failing there, however. He started numerous failed businesses, went bankrupt twice and was defeated in 26 campaigns he made for public office.

J. K. Rowling: Rowling may be rolling in a lot of Harry Potter dough today, but before she published the series of novels, she was nearly penniless, severely depressed, divorced, trying to raise a child on her own while attending school and writing a novel. Rowling went from depending on welfare to survive to being one of the richest women in the world in a span of only five years through her hard work and determination.

Walt Disney: Today Disney rakes in billions from merchandise, movies and theme parks around the world, but Walt Disney had many personal failures. He was fired by a newspaper editor because, “he lacked imagination and had no good ideas.” After that, Disney started a number of businesses that didn’t last too long and ended with bankruptcy and failure. He kept trying and learning, however, and eventually found a recipe for success that worked.

Harland David Sanders: Perhaps better known as Colonel Sanders of Kentucky Fried Chicken fame, Sanders had a hard time selling his chicken at first. In fact, his famous secret chicken recipe was rejected 1,009 times before a restaurant accepted it. He learned not to fear rejection and persevered.

Thomas Edison: In his early years, teachers told Edison he was “too stupid to learn anything.” Work was no better, as he was fired from his first two jobs for not being productive enough. Even as an inventor, Edison made 1,000 unsuccessful attempts at inventing the light bulb. One day, an assistant asked him why he didn’t give up. After all, he failed over a thousand times. Edison replied that he had not failed once. He had discovered over 1000 things that don’t work.

Ludwig van Beethoven: In his formative years, young Beethoven was incredibly awkward on the violin and was often so busy working on his own compositions that he neglected to practice. Despite his love of composing, his teachers felt he was hopeless at it and would never succeed with the violin or in composing. In fact, his music teacher told his parents he was too stupid to be a music composer.

Stephen King: The first book by this author, the iconic thriller Carrie, received 30 rejections, finally causing King to give up and throw it in the trash. His wife fished it out and encouraged him to resubmit it, and the rest is history, with King now having hundreds of books published and the distinction of being one of the best-selling authors of all time.

Bill Gates: Gates didn’t seem destined for success after dropping out of Harvard. He started a business with Microsoft co-founder Paul Allen called Traf-O-Data. While this early idea for a business failed miserably, Gates did not despair and give up. Instead he learned much from the failure and later created the global empire that is Microsoft.

Henry Ford: While Ford is today known for his innovative assembly line and American-made cars, he wasn’t an instant success. In fact, his early businesses failed and left him broke five times. He was advised by countless people not to get into the manufacturing of automobiles because he had neither the capital or know how.

F. W. Woolworth: Some may not know this name today, but Woolworth was once one of the biggest names in department stores in the U.S. Before starting his own business, young Woolworth worked at a dry goods store and was not allowed to wait on customers because his boss said he lacked the sense needed to do so. Woolworth also had many ideas of how to market dry goods – all of which were rejected by his boss. He quit and marketing ideas became the foundation of his phenomenal retail success with his own stores.

Akio Morita: You may not have heard of Morita but you’ve undoubtedly heard of his company, Sony. Sony’s first product was a rice cooker that unfortunately didn’t cook rice so much as burn it, selling less than 100 units. The rice cooker was the object of scorn and laughter by the business community. This did not discourage Morita and his partners as they pushed forward to create a multi-billion-dollar company.

Orville and Wilbur Wright: These brothers battled depression and family illness before starting the bicycle shop that would lead them to experimenting with flight. They were competing against the best engineering and scientific minds in America at the time, who were all well financed and supported by the government and capital investors to make the first airplane. After numerous attempts at creating flying machines, several years of hard work, and tons of failed prototypes, the brothers finally created a plane that could get airborne and stay there.

Vincent Van Gogh: During his lifetime, Van Gogh sold only one painting, and this was to a friend and only for a very small amount of money. While Van Gogh was never a success during his life, he plugged on with painting, sometimes starving to complete his over 800 known works. Today, they bring in hundreds of millions of dollars each.

Fred Astaire: In his first screen test, the testing director of MGM noted that Astaire “Can’t act. Can’t sing. Slightly bald. Not handsome. Can dance a little.” Astaire went on to become an incredibly successful actor, singer and dancer and kept that note in his Beverly Hills home to remind him of where he came from.

Steven Spielberg: While today Spielberg’s name is synonymous with big budget, he was rejected from the University of Southern California School of Theater, Film and Television three times. He eventually attended school at another location, only to drop out to become a director before finishing. Thirty-five years after starting his degree, Spielberg returned to school in 2002 to finally complete his work and earn his BA.

Charles Darwin was chastised by his father for being lazy and too dreamy. Darwin himself once wrote that his father and teachers considered him rather below the common standard of intellect. When Charles Darwin first presented his research on evolution, it was met with little enthusiasm. He continued to work on his theory of evolution when all of his colleagues called him a fool and what he was doing “a fool’s experiment.”

Jack Canfield was rejected 144 times before he found a publisher for his book, Chicken Soup for the Soul. When Jack told the publisher he wanted to sell 1.5 million books in the first 18 months, the publisher laughed and said he’d be lucky to sell 20,000. That first book sold more than 8 million copies in America and 10 million copies around the world. Canfield’s book brand is now a $1 Billion brand.

The artist genius of the ages is Michelangelo. His competitors once tried to set him up for failure or force him to forgo a commission because of the possibility of failure. Michelangelo’s competitors persuaded Junius II to assign to him a relatively obscure and difficult project. It was to fresco the ceiling of a private chapel. The chapel had already been copiously decorated with frescoes by many talented artists. Michelangelo would be commissioned to decorate the tunnel-vaulted ceiling. In this way, his rivals thought they would divert his energies from sculpture, in which they realized he was supreme. This, they argued, would make things hopeless for him, since he had no experience in fresco, he would certainly, they believed, do amateurish work as a painter. Without doubt, they thought, he would be compared unfavorably with Raphael, and even if the work were a success, being forced to do it would make him angry with the Pope, and thus one way or another they would succeed in their purpose of getting rid of him.

Michelangelo, protesting that painting was not his art, still took on the project. In every way it was a challenging task. He had never used color, nor had he painted in fresco. He executed the frescos in great discomfort, having to work with his face looking upwards, which impaired his sight so badly that he could not read or look at drawings save with his head turned backwards, and this lasted for several months. In that awkward curved space, Michelangelo managed to depict the history of the Earth from the Creation to Noah, surrounded by ancestors and prophets of Jesus and finally revealing the liberation of the soul. His enemies had stage managed the masterpiece that quickly established him as the artist genius of the age. ……………………………………………………………………………………………………. . . . . .

Take one of your failed ideas and use the technique described in ThinkPak to elaborate and modify it into something new. Amaze yourself.

The Lessons I Learned from Nikola Tesla and my Grandfather that Influenced my Life



Consider what Nikola Tesla accomplished with his mind’s eye. He is the man who invented the modern world. He was a physicist first, and electrical engineer and mechanical engineer later. Tesla invented the AC electricity, electric car, radio, the bladeless turbine, wireless communication, fluorescent lighting, the induction motor, a telephone repeater, the rotating magnetic field principle, the poly-phase alternating current system, alternating current power transmission, Tesla Coil transformer, and more than 700 other patents.

At an early age Tesla created an imaginary world where he pretended to reside. In his autobiography “My Inventions,” Tesla described: Every night and sometimes during the day, when alone, I would start out on my journeys, see new places, cities and countries, live there, meet with people, make friendships and acquaintances and, however unbelievably it is a fact that they were just as dear to me as those in actual life and not a bit less intense in their manifestations. He used to practice this kind of mind-journey constantly until he was about seventeen, at which age he began creating inventions for the modern world.

When he became an adult, he would imagine himself in the future and observe what devices and machines they had. Tesla imagined himself to be a time traveler. He would note how they created energy, how they communicated, and lived.  He could picture them all as if they were real in his imaginary mind. He would conduct imaginary experiments and collect data. He described that he needed no models, drawings or experiments in a physical place.

When he attained an idea for a new machine, he would create the machine in his imagination. Instead of building a model or prototype, he would conceive a detailed mental model. Then he would leave it running in his imagination. His mental capacity was so high that after a period of time he would calculate the wear and tear of the different parts of his imaginary machine. Always his results would prove to be incredibly accurate.

Tesla believed he was the greatest genius on earth and acted the part every day. He refused to share the Noble prize with Thomas Edison in 1915 because he considered Edison unworthy of sharing a stage with him. He also vowed he would never accept the prize if they awarded it to Edison before him. Consequently, neither received the prize.

Nicola Tesla taught me the value of being self-confident. A self-confident attitude, to me, is more important than facts. It is more important than the past, than education, than money, than circumstances, then failure, then successes, then what other people think or say or do.

Many years ago I met my grandfather Dido by chance as he was walking home from work. He had a rough day. His car conked out and he was not able to repair it. The auto shop picked it up and he was told it was going to be an expensive repair. Earlier in the day his best friend had a massive heart attack and was in serious condition in the hospital. Additionally, he was told his work hours were being cut back because of the lack of orders. He told me all this and then he walked in stony silence the rest of the way.

On arriving, he invited me in. As we walked toward the front door, he paused briefly at a small tree, closed his eyes and touched the tips of the branches with both hands. After opening the door, he underwent an amazing transformation. His tanned face was wreathed in smiles and he hugged my grandmother and gave her a big kiss. Afterward, I asked him why he had stopped at the tree and touched the branches. “Oh,” he laughed, “that’s my trouble tree,” he replied. “I know I can’t help having troubles, but one thing for sure, troubles don’t belong in my house with my wife and family. So I just hang them up on the tree every night when I come home. Then in the morning, I pick them up again.” “Funny thing is,” he smiled, “when I come out in the morning to pick them up, there aren’t nearly as many as I remember hanging up the night before.”

My grandfather taught me that we cannot change the inevitable, but the remarkable thing is that if we have the right attitude we have a choice how we handle it.


(Michael Michalko is the highly-acclaimed author of Thinkertoys: A Handbook of Creative Thinking Techniques; Cracking Creativity: The Thinking Strategies of Creative Geniuses;  Thinkpak: A Brainstorming Card Deck, and Creative Thinkering: Putting Your Imagination to Work.






Problems frequently give a vague sense of disquiet, a sense of things not going in quite the direction you had planned however, you have no clear thoughts of what the ‘right’ direction might be. This exercise that follows was suggested by St Ignatius Loyola (some 500 years ago).

It allows you to explore problems at a ‘deeper’ subconscious level by changing your perspective from the external to the personal. He suggested imaging yourself at different ages while experimenting with new ideas to solve problems. Begin by relaxing in a calm, quiet environment then:

  • Imagine your infancy, in your imagination think back to when you were a small, helpless, dependent, infant born into a particular environment
  • Imagine being5, imagine you are now 5, how did it feel to be 5? Can you picture images and memories from that time?
  • Imagine being 12, 25, 40, 65, after a few minutes, project your imagination to what you were like when you were 12, did you worry? What was important to you? What was your world like? Using the same method of thinking ask yourself the same questions for age 25 and 40 and 65.
  • Imagine being very, very old; imagine looking in the mirror when you are very old. What do you see? How you feel about yourself? Who are you? Take a retrospective look over your whole life – what really mattered? What would you have like to have done differently? Are you ready to die?
  • Imagine your death, what are your thoughts as you imagine yourself dying? Imagine your closest friends and relatives, what would they be thinking about you?
  • Imagine being reborn, after a few, or when you feel ready, imagine you are going to be reborn. You can be reborn, anywhere at any time as anything you desire. What would your choices be?
  • Return, when you feel ready to open your eyes, gradually look around you as if seeing everything for the first time.

All of us can change our perspectives by following St. Ignatius’s exercise. Peggy Dupra a middle school principal had a problem with her female pupils who were experimenting with lipstick. The girls were kissing the mirrors in the bathroom leaving their lip prints on bathroom mirrors. The maintenance department constantly asked her to have the pupils stop this practice. Peggy lectured, pleaded and threatened the girls with detention, but nothing seemed to help.

She and I discussed the situation, and I suggested the St. Ignatius technique which uses your imagination to change your age and circumstances both past and future. This exercise re-creates earlier and future selves. After a few moments, you’ll become aware of random thoughts, associations and images from past and future years. Eventually these thoughts and images will be accompanied by emotions–in some instances, very intense ones. This emotions are stimulated by the brain’s attempt to reconcile and synthesize the disparity the real “you” and the imagined “you.”

While the brain knows the imagined you isn’t really you, it will still respond from moment to moment as if it were real. You won’t just remember events; you will remember how you felt about them.

Peggy tried the exercise. She began remembering all sorts of past friends when you was twelve years old, and how she really felt at the time about the world. She more she remembered the more she felt like a young school girl. She laughed when she thought of her best friend Ellen of years ago and how they always tried to gross each other out in a game they called “Yechhhh!” She remembered one time when they spread the rumor that the cafeteria was using sewage water from a ditch to make pizzas to save water. The students refused to eat the pizza.

Suddenly thinking about how they grossed out students she got an insight on how to solve her bathroom lipstick problem. After conspiring with the janitor, she invited the girls into the bathroom saying she wanted them to witness the extra work they made for the janitor cleaning their lip prints. The janitor came in and stepped into an open toilet stall. He dipped his squeegee into a toilet, shook off the excess toilet water then used the squeegee to clean the mirrors. Changing her perspective from an adult to a young girl introduced a clever solution to her problem that she could not have discovered using her usual way of thinking.


Discover the creative thinking techniques and strategies used by creative geniuses throughout history to get their breakthrough ideas.



The difference between the way creative thinkers think and the way you were educated to think



REARRANGE IT INTO SOMETHING ELSE? Creativity, it could be said, consists largely of rearranging what we know in order to find out what we do not know. Rearrangement usually offers countless alternatives for ideas, goods, and services. A baseball manager, for example, can shuffle his lineup 362,880 times.


What other arrangement might be better?

Interchange components?

Other pattern? Other layout? Other sequence? Change the order?

Transpose cause and effect?

Change pace? Change schedule?


Rearrange the letters in simple words and see what surprises you can create. Following are some examples.


When you rearrange the letters:




When you rearrange the letters:




When you rearrange the letters:




When you rearrange the letters:




When you rearrange the letters:




When you rearrange the letters:




When you rearrange the letters:




When you rearrange the letters:




When you rearrange the letters: 




When you rearrange the letters: 




When you rearrange the letters:




When you rearrange the letters:




When you rearrange the letters:



(Michael Michalko is the author of Thinkertoys: A Handbook of Creative Thinking Techniques; Cracking Creativity: The Thinking Strategies of Creative Geniuses; Thinkpak: A Brainstorming Card Deck, and Creative Thinkering: Putting Your Imagination to Work.


Einstein’s Fantasies


Think of how Albert Einstein changed our understanding of time and space by fantasizing about people going to the center of time in order to freeze their lovers or their children in century-long embraces. This space he imagined is clearly reminiscent of a black hole, where, theoretically, gravity would stop time. Einstein also fantasized about a woman’s heart leaping and falling in love two weeks before she has met the man she loves, which lead him to the understanding of acausality, a feature of quantum mechanics. A caricature of special relativity (the relativistic idea that people in motion appear to age more slowly) is based on his fantasy of a world in which all the houses and offices are on wheels, constantly zooming around the streets (with advance collision-avoidance systems).

Even the “Many worlds” interpretation which is espoused by some physicists, including Stephen Hawkins is based on Einstein’s fantasy of a world where time has three dimensions, instead of one, where every moment branches into three futures. Einstein summarized value of using your imagination to fantasize best when he said “The gift of fantasy has meant more to me than my talent for absorbing positive knowledge.”

THOUGHT EXPERIMENT: Try to solve the following thought experiment before you read the paragraph that follows it. The thought experiment is attributed to the German Gestalt psychologist Karl Dunker.

One morning, exactly at sunrise, a Buddhist monk began to climb a tall mountain. The narrow path, no more than a foot or two wide, spiraled around the mountain to a glittering temple at the summit. The monk ascended the path at a varying rate of speed, stopping many times along the way to rest and to eat the dried fruit he carried with him. He reached the temple shortly before sunset. After several days of fasting and meditation, he began his journey back along the same path, starting at sunrise and again walking at a varying speed with many stops along the way. His average speed descending was, of course, greater than his average climbing speed. Is there a spot along the path that the monk will occupy on both trips at precisely the same time of day?

If you try to logically reason this out or use a mathematical approach, you will conclude that it is unlikely for the monk to find himself on the same spot at the same time of day on two different occasions. Instead, visualize the monk walking up the hill, and at the same time imagine the same monk walking down the hill. The two figures must meet at some point in time regardless of their walking speed  or how often they stop. Whether the monk descends in two days or three days makes no difference; it all comes out to the same thing.

Now it is, of course, impossible for the monk to duplicate himself and walk up the mountain and down the mountain at the same time. But in the visual image he does; and it is precisely this indifference to logic, this superimposition of one image over the other, that leads to the solution. The imaginative conception of the monk meeting himself blends the journeys up and down the mountain and superimposes one monk on the other at the meeting place.

Your brain is a dynamic system that evolves its patterns of activity rather than computes them like a computer. It thrives on the creative energy of feedback from experiences real or fictional. You can synthesize experience; literally create it in your own imagination. The human brain cannot tell the difference between an “actual” experience and a fantasy imagined vividly and in detail. This discovery is what enabled Albert Einstein to create his thought experiments with imaginary scenarios that led to his revolutionary ideas about space and time.

Imagination gives us the impertinence to imagine making the impossible possible. Einstein, for example, was able to imagine alternatives to the sacred Newtonian notion of absolute time, and discovered that time is relative to your state of motion. Think of the thousands of scientists who must have come close to Einstein’s insight but lacked the imagination to see it because of the accepted dogma that time is absolute, and who must have considered it impossible to contemplate any theory. 

Think of an impossibility, then try to come up with ideas that take you as close as possible to that impossibility. For example, imagine an automobile that is a live, breathing creature, List attributes of living creatures. They are, for example, breathing, growing older, reproducing, feeling emotions, and so on. Then use as many of those attributes as you can while designing your automobile. For instance, can you work emotions into something that a car displays?

Japanese engineers for Toyota are working on a car that they say can express moods ranging from angry to happy to sad. The car can raise or lower its body height and ‘‘wag’’ its antenna, and it comes equipped with illuminated hood designs, capable of changing colors, that are meant to look like eyebrows, eyes, and even tears. The car will try to approximate the feelings of its driver by drawing on data stored in an onboard computer. So, for example, if another car swerves into an expressive car’s lane, the right combination of deceleration, brake pressure, and defensive steering, when matched with previous input from the driver, will trigger an ‘‘angry’’ look.

The angry look is created as the front end lights up with glowering red U-shaped lights, the headlights become hooded at a forty-five-degree angle, and downward-sloping “eyebrow” lights glow crimson. A good-feeling look is lighting up orange, and one headlight winks at the courteous driver and wags its antennae. A sad-feeling look is blue with “tears” dripping from the headlights.

Stretching your imagination by trying to make impossible things possible with concrete thoughts and actions is a mirror reversal of dreaming. Whereas a dream represents abstract ideas as concrete actions and images, this creative process works in the opposite direction, using concrete ideas (a car that is alive) to gain insight on a conscious level to reveal disguised thoughts (about cars showing emotion) as creative imagery.


Michael Michalko is a renowned creativity expert whose books include Thinkertoys: A Handbook of Creative Thinking Techniques; Cracking Creativity: The Secrets of Creative Genius; ThinkPak: A Brainstorming Card Deck and Creative Thinkering: Putting Your Imagination to Work.

How can a beehive inspire an idea on how to de-ice power lines during ice storms


If one particular thinking strategy stands out about creative genius, it is the ability to make juxtapositions that elude mere mortals. Call it a facility to connect the unconnected that enables them to see relationships to which others are blind. They set their imagination in motion by using unrelated stimuli and forcing connections with their subject.

Leonardo Da Vinci discovered that the human brain cannot deliberately concentrate on two separate objects or ideas, no matter how dissimilar, without eventually forming a connection between them. No two inputs can remain separate in your mind no matter how remote they are from each other.

In tetherball, a ball is fastened to a slender cord suspended from the top of a pole. Players bat the ball around the pole, attempting to wind its cord around the pole above a certain point. Obviously, a tethered ball on a long string is able to move in many different directions, but it cannot get away from the pole. If you whack at it long enough, eventually you will wind the cord around the pole. This is a closed system.

Like the tetherball, if you focus on two subjects for a period of time, you will see relationships and connections that will trigger new ideas and thoughts that you cannot get using your usual way of thinking. Da Vinci’s knack to make remote connections was certainly at the basis of Leonardo’s genius to form analogies between totally different systems. He associated the movement of water with the movement of human hair, thus becoming the first person to illustrate in extraordinary detail the many invisible subtleties of water in motion. His observations led to the discovery of a fact of nature which came to be called the Law of Continuity.

When you make a connection between two unrelated subjects, your imagination will leap to fill the gaps and form a whole in order to make sense of it. Suppose you are watching a mime impersonating a man taking his dog out for a walk. The mime’s arm is outstretched as though holding the dog’s leash. As the mime’s arm is jerked back and forth, you “see” the dog straining at the leash to sniff this or that. The dog and the leash become the most real part of the scene even though there is no dog or leash. In the same way, when you make connections between your subject and something that is totally unrelated, your imagination fills in the gaps to create new ideas. It is this willingness to use your imagination to fill in the gaps that produces the unpredictable idea. This is why Einstein claimed that imagination is more important than knowledge.

Engineers working for a power company in the northwest were struggling with the problem of how to de-ice power lines during ice storms so they don’t collapse from the weight of the ice. The conventional approaches to the problem were proving to be very expensive and inefficient. It is not possible to think unpredictably by looking harder and longer in the same direction. When your attention is focused on a subject, a few patterns are highly activated in your brain and dominate your thinking. These patterns produce only predictable ideas no matter how hard you try. In fact, the harder you try, the stronger the same patterns become. If, however, you change your focus and think about something that is not related, different, unusual patterns are activated. If one of these newer patterns relates to one of the first patterns, a connection will be made.

This is what the engineers did. Using a technique from my book Thinkertoys on how to force connections between a challenge and a random stimulus, they randomly picked the subject “Beehives.” Then they listed a variety of things that are associated with beehives and listed them.

Included were:

  •  Bees colonize and live in beehives.
  • Beehives are used to store honey and pollen.
  • Honey is a sweet food.
  • Ancient Egyptians used honey to embalm corpses.
  • Beehives are a favorite food of bears.
  • Bears will climb trees to get the hive or vibrate the tree to make it fall.
  • Bees communicate with each other with vibrating wings.
  • Vibrating wings also make it possible for bees to hover.

The associations with beehives and vibrating wings and bears vibrating trees got them all interested in the principle of vibrational motion as the answer. Vibrate the ice off the power lines. But how? How can we use vibration to help solve the problem?

One engineer remarked that seeing bees hover like helicopters that reminded him of the powerful downwash from a helicopter’s blades. The answer is to hover choppers over the lines and the downwash will vibrate the ice off the lines. This proved to be the most efficient and economical solution to the problem.


For more information about forcing connections between dissimilar subjects, review Michael Michalko’s THINKERTOYS



André Breton was a French writer and poet. He is known best as the founder of surrealism. The surrealists sought to overthrow the oppressive rules of society by demolishing its backbone of rational thought. To do so, they attempted to tap into the “superior reality” of the subconscious mind. “Completely against the tide,” said Breton, “in a violent reaction against the impoverishment and sterility of thought processes that resulted from centuries of rationalism, we turned toward the marvelous and advocated it unconditionally.” 

Many of the tenets of surrealism included an emphasis on the actual functioning of thought…in the absence of any control exercised by reason. They created many exercises designed to probe the subconscious by getting the minds to be as passive and receptive as possible. 

One day I had a long discussion with a friend about the Japanese whaling industry and their illegal poaching practices. After the discussion, I decided to experiment with one of Andre Breton’s surrealist exercises. The exercise has 3 small, grid like areas and one large grid on a sheet of paper.  


The first rule of the exercise was to always forget your genius, talents, as well as the genius and talents of others. Try not to think about what you are doing—just let your automatic functions take over, letting them proceed as they wish. Your final solution will not come from your normal way of solving problems, but from a deeper, more intuitive impulse. So whatever happens, let it happen. The guidelines are:

  • Think of a problem. Don’t dwell on it and dismiss it from your thoughts. Look at the design below with the grids.
  • Use the 3 small grids at the top to create an image in the spirit of your unconscious. Try not to think of what you’re doing…just let your automatic functions take over, letting them proceed as they wish.
  • Then with the large grid on the bottom revert to your usual way of thinking and impose your will to create whatever imagery, abstract or literal you wish.

My problem was how to control the illegal whale harvesting by the Japanese whalers. In the small grids I drew one squiggle that looked like a human skull, one that looked like quotation markets and one that looked like a rose. In the large grid I drew a stick figure of a man with two profiles: one looking left and one looking right.

I pondered over my drawings for a long time. The skull reminded me of a pirate’s black flag; the quotation marks reminded me of a quote “The opposite of a profound truth is another truth; and the rose reminded me of the roses I give my wife to celebrate our union as husband and wife. The stick figure in the large grid reminded me of the ambiguity in all aspects of life e.g., no one is all good or all evil.

These images combined and recombined in my imagination and inspired the thought of one way of fighting an illegal activity is to use an illegal enforcement activity. The pirate’s flag reminded me of the Somalian pirate ships off the coast of Africa. The rose got me thinking of combining two illegal activities. The stick figure made me think of looking the other way when something illegal is accomplishing something good.

My final idea all this inspired is to make it legal for the Somali pirates to hijack illegal Japanese Whalers and hold them for ransom.

Now it’s your turn to give it a try.

Michael Michalko



We have not been taught how to think for ourselves, we have been taught what to think based on what past thinkers thought. We are taught to think reproductively, not productively. What most people call thinking is simply reproducing what others have done in the past. We have been trained to seek out the neural path of least resistance, searching out responses that have worked in the past, rather than approach a problem on its own terms.

Educators discourage us from looking for alternatives to prevailing wisdom. When confronted with a problem, we are taught to analytically select the most promising approach based on past history, excluding all other approaches and then to work logically within a carefully defined direction towards a solution. Instead of being taught to look for possibilities, we are taught to look for ways to exclude them. This kind of thinking is dehumanizing and naturalizes intellectual laziness which promotes an impulse toward doing whatever is easiest or doing nothing at all. It’s as if we entered school as a question mark and graduated as a period.

Once when I was a young student, I was asked by my teacher, “What is one-half of thirteen?” I answered six and one half or 6.5. However, I exclaimed there are many different ways to express thirteen and many different to halve something. For example, you can spell thirteen, then halve it (e.g., thir/teen). Now half of thirteen becomes four (four letters in each half). Or, you can express it numerically as 13, and now halving 1/3 gives you 1 and 3. Another way to express a 13 is to express it in Roman numerals as XIII and now halving XI/II gives you XI and II, or eleven and two. Consequently one-half of thirteen is now eleven and two. Or you can even take XIII, divide it horizontally in two (XIII) and half of thirteen becomes VIII or 8.

My teacher scolded me for being silly and wasting the class’s time by playing games. She said there is only one right answer to the question about thirteen. It is six and one-half or 6.5. All others are wrong. I’ll never forget what she said “When I ask you a question, answer it the way you were taught or say you don’t know. If you want to get a passing grade, stop making stuff up.”

When we learn something, we are taught to program it into our brain and stop thinking about or looking for alternatives. Over time these programs become stronger and stronger, not only cognitively but physiologically as well. To get a sense of how strong these programs are, try solving the following problem.

Even when we actively seek information to test our ideas to see if we are right, we usually ignore paths that might lead us to discover alternatives. Following is an interesting experiment, which was originally conducted by the British psychologist Peter Wason that demonstrates this attitude. Wason would present subjects with the following triad of three numbers in sequence.

2       4       6

He would then ask subjects to write other examples of triads that follow the number rule and explain the number rule for the sequence. The subjects could ask as many questions as they wished without penalty.

He found that almost invariably most people will initially say, “4, 6, 8,” or “20, 22, 24,” or some similar sequence. And Watson would say, yes, that is an example of a number rule. Then they will say, “32, 34, 36″ or “50, 52, 54″ and so on– all numbers increasing by two. After a few tries, and getting affirmative answers each time, they are confident that the rule is numbers increasing by two without exploring alternative possibilities.

Actually, the rule Wason was looking for is much simpler– it’s simply numbers increasing. They could be 1, 2, 3 or 10, 20, 40 or 400, 678, 10,944. And testing such an alternative would be easy. All the subjects had to say was 1, 2, 3 to Watson to test it and it would be affirmed. Or, for example, a subject could throw out any series of numbers, for example, 5, 4, and 3 to see if they got a positive or negative answer. And that information would tell them a lot about whether their guess about the rule is true.

The profound discovery Wason made was that most people process the same information over and over until proven wrong, without searching for alternatives, even when there is no penalty for asking questions that give them a negative answer. In his hundreds of experiments, he, incredibly, never had an instance in which someone spontaneously offered an alternative hypothesis to find out if it were true. In short, his subjects didn’t even try to find out if there is a simpler or even, another, rule.

On the other hand, creative thinkers have a vivid awareness of the world around them and when they think, they seek to include rather than exclude alternatives and possibilities. They have a “lantern awareness” that brings the whole environment to the forefront of their attention. So, by the way, do children before they are educated. This kind of awareness is how you feel when you visit a foreign country; you focus less on particulars and experience everything more globally because so much is unfamiliar.

I am reminded of a story about a student who protested when his answer was marked wrong on a physics degree exam at the University of Copenhagen. The imaginative student was purportedly Niels Bohr who years later was co-winner of the Nobel Prize for physics.

In answer to the question, “How could you measure the height of a skyscraper using a barometer?” he was expected to explain that the barometric pressures at the top and the bottom of the building are different, and by calculating, he could determine the building’s height. Instead, he answered, “You tie a long piece of string to the neck of the barometer, then lower the barometer from the roof of the skyscraper to the ground. The length of the string plus the length of the barometer will equal the height of the building.

This highly original answer so incensed the examiner that the student was failed immediately. The student appealed on the grounds that his answer was indisputably correct, and the university appointed an independent arbiter to decide the case.

The arbiter judged that the answer was indeed correct, but did not display any noticeable knowledge of physics. To resolve the problem it was decided to call the student in and allow him six minutes in which to provide a verbal answer that showed at least a minimal familiarity with the basic principles of physics.

For five minutes the student sat in silence, forehead creased in thought. The arbiter reminded him that time was running out, to which the student replied that he had several extremely relevant answers, but couldn’t make up his mind which to use. On being advised to hurry up the student replied as follows:

“Firstly, you could take the barometer up to the roof of the skyscraper, drop it over the edge, and measure the time it takes to reach the ground. The height of the building can then be worked out from the formula H = 0.5g x t squared. But bad luck on the barometer.”

“Or if the sun is shining you could measure the height of the barometer, then set it on end and measure the length of its shadow. Then you measure the length of the skyscraper’s shadow, and thereafter it is a simple matter of proportional arithmetic to work out the height of the skyscraper.”

“But if you wanted to be highly scientific about it, you could tie a short piece of string to the barometer and swing it like a pendulum, first at ground level and then on the roof of the skyscraper. The height is worked out by the difference in the gravitational restoring force T =2 pi sqr root (I /9).”

“Or if the skyscraper has an outside emergency staircase, it would be easier to walk up it and mark off the height of the skyscraper in barometer lengths, then add them up.”

“If you merely wanted to be boring and orthodox about it, of course, you could use the barometer to measure the air pressure on the roof of the skyscraper and on the ground, and convert the difference in millibars into feet to give the height of the building.”

“But since we are constantly being exhorted to exercise independence of mind and apply scientific methods, undoubtedly the best way would be to knock on the janitor’s door and say to him ‘If you would like a nice new barometer, I will give you this one if you tell me the height of this skyscraper’.”

The obvious moral here is that education should not consist merely of stuffing students’ heads full of information and formulae to be memorized by rote and regurgitated upon demand, but of teaching students how to think and solve problems using whatever tools are available. In the mangled words of a familiar phrase, students should be educated in a way that enables them to figure out their own ways of catching fish, not simply taught a specific method of fishing.



Visit Michael Michalko’s creative thinking website:

Creative Thinking Technique: Combine Ideas from Different Domains

Many breakthroughs are based on combining information from different domains that are usually not thought of as related. Integration, synthesis both across and within domains, is the norm rather than the exception. Ravi Shankar found ways to integrate and harmonize the music of India and Europe; Paul Klee combined the influences of cubism, children’s drawings, and primitive art to fashion his own unique artistic style; Salvador Dali integrated Einstein’s theory of relativity into his masterpiece Nature Morte Vivante, which artistically depicts several different objects simultaneously in motion and rest. And almost all scientists cross and recross the boundaries of physics, chemistry, and biology in the work that turns out to be their most creative.

ASK PEOPLE IN DIFFERENT DOMAINS FOR IDEAS. Another way to combine talent is to elicit advice and information about your subject from people who work in different domains. Interestingly, Leonardo da Vinci met and worked with Niccolô Machiavelli, the Italian political theorist, in Florence in 1503. The two men worked on several projects together, including a novel weapon of war: the diversion of a river. Professor Roger Masters of Dartmouth College speculates that Leonardo introduced Machiavelli to the concept of applied science. Years later, Machiavelli combined what he learned from Leonardo with his own insights about politics into a new political and social order that some believe ultimately sparked the development of modern industrial society.

Jonas Salk, developer of the vaccine that eradicated polio, made it a standard practice to interact with men and women from very different domains. He felt this practice helped to bring out ideas that could not arise in his own mind or in the minds of people in his own restricted domain. Look for ways to elicit ideas from people in other fields. Ask three to five people who work in other departments or professions for their ideas about your problem. Ask your dentist, your accountant, your mechanic, etc. Describe the problem and ask how they would solve it.

Listen intently and write down the ideas before you forget them. Then, at a later time, try integrating all or parts of their ideas into your idea. This is what Robert Bunsen, the chemist who invented the familiar Bunsen burner, did with his problem. He used the color of a chemical sample in a gas flame for a rough determination of the elements it contained. He was puzzled by the many shortcomings of the technique that he and his colleagues were unable to overcome, despite their vast knowledge of chemistry. Finally, he casually described the problem to a friend, Kirchhoff, a physicist, who immediately suggested using a prism to display the entire spectrum and thus get detailed information. This suggestion was the breakthrough that led to the science of spectrography and later to the modern science of cosmology.

EXAMPLES. Physicists in a university assembled a huge magnet for a research project. The magnet was highly polished because of the required accuracy of the experiment. Accidentally, the magnet attracted some iron powder that the physicists were unable to remove without damaging the magnet in some way. They asked other teachers in an interdepartmental meeting for their ideas and suggestions. An art instructor came up with the solution immediately, which was to use modeling clay to remove the powder.

The CEO of a software company looked for ways to motivate employees to participate more actively in the creative side of the business. They wanted employee ideas for new processes, new products, improvements, new technologies and so on. He tried many things but nothing seemed to excite and energize employees to become more creative.

One evening at a dinner with some of his friends he mentioned his problem and asked them for ideas. After a brief discussion, a friend who was a stockbroker suggested thinking ways to parallel ideas with stocks. Look for ways for people to buy and sell ideas the same way his customers study, buy and sell stocks on the stock exchange.

The CEO was intrigued with the novelty of the idea and he and his stockbroker friend looked for patterns between the stock exchange and an internal employee program. They blended the architecture of the stock exchange with the internal architecture of their company’s internal market to create the company’s own stock exchange for ideas. Their exchange is called Mutual Fun. Any employee can propose that the company acquire a new technology, enter a new business, make a new product or make an efficiency improvement. These proposals become stocks, complete with ticker symbols, discussion lists and e-mail alerts.

 Fifty-five stocks are listed on the company’s internal stock exchange. Each stock comes with a detailed description — called an expectus, as opposed to a prospectus — and begins trading at a price of $10. Every employee gets $10,000 in “opinion money” to allocate among the offerings, and employees signal their enthusiasm by investing in a stock and, better yet, volunteering to work on the project. Employees buy or sell the stocks, and prices change to reflect the sentiments of the company’s executives, engineers, computer scientists, project managers, marketing, sales, accountants and even the receptionist.

The result has been a resounding success. Among the company’s ‘ core technologies are pattern-recognition algorithms used in military applications, as well as for electronic gambling systems at casinos. A member of the administrative staff, with no technical expertise, thought that this technology might also be used in educational settings, to create an entertaining way for students to learn history or math. She started a stock called Play and Learn (symbol: PL), which attracted a rush of investment from engineers eager to turn her idea into a product. Lots of employees got passionate about the idea and it led to a new line of business.

INVITE OTHER DEPARTMENTS TO JOIN YOUR BRAINSTORMING SESSION. If you’re brainstorming a business problem in a group, try asking another department to join yours. For example, if you are in advertising and want to create a new product advertising campaign, ask people from manufacturing to join your session. Separate the advertising and manufacturing people into two groups. Each group brainstorms for ideas separately. Then combine the groups and integrate the ideas.


cc.3For more ideas on how to combine dissimilar subjects to create new ideas read Cracking Creativity: The Secrets of Creative Genius by Michael Michalko